

D
ec

em
be

r
17

, 2
00

6

Research Internship
Navigational Aid for the Visually Impaired

DA-IICT

Prof R.N Biswas

Deepak Jagdish, Mohit Gupta, Rahul Sawhney, Shreyas Nangia

2

Summer Research Internship Report

Abstract:

3

Contents
Contents .. 3

Introduction ... 5

learnings and outcomes ... 5

Process Description .. 7

Team and Contributions .. 8

Motivations ... 9

Expectations and overview after the first phase .. 9

Software design and development .. 13

Mouse ... 13

Keyboard ... 20

Windows Accessibility at OS and Application levels ... 22

Frameworks & Platforms used & reasoning ... 25

Rationale behind the design & development of in-focus Menu 25

ά² Ƙŀǘ ƛǎ ƛƴ-ŦƻŎǳǎ Ƴ Ŝƴǳέ ... 25

άƛƴ-focus menu ς {ǘǊǳŎǘǳǊŜ Υ ǿ Ƙȅ ϧ Ƙƻǿ έ... 26

Windows Event Management System .. 28

Sound Feedback System .. 31

Sonic Map ... 31

Software on the Pocket PC ... 35

Bluetooth Communication Module ... 36

Interface Development Issues on Pocket PC ... 37

Blindness, navigation and aural substitution ... 39

4

Navigation and Sound .. 41

Sonic Grid and User Feedback .. 49

Further Study ... 53

Hardware Learnings and Experimentation ... 55

Bibliography ... 56

5

Intr oduction

The modern world has been designed with a certain view of the human who is to
benefit from the construction. In this process of engineering our world, we have at
certain junctures not thought about minorities such as those who are not physically or
mentally able to conform to our supposed regularities. Our project aimed to create and
describe experiments in auditory information processing, in addition to dealing with the
technological and design issues involved in developing navigational solutions for the
visually impaired.

We looked at the problem in two broad areas where navigation for the blind is limited
due to designs that have been streamlined for ocular use ς traveling in modern day
interiors and urban spaces and the use of spatially aware systems on the computer.

The project aimed to provide a better understanding of the technical and social issues
which hinder in easy navigation for the visually impaired. The endeavor was to gain an
insight into the understandings and perceptions of the visually impaired and to
continually prototype and explore our ideas for technical feasibility. An initial
expectation was also to allow for free brainstorming continually during the duration of
the project about techniques and interfaces that could be built, without a firm focus on
products already being developed. It was felt that features and little nuances of
interaction should be explored without allowing for too many constraints and
preconceived notions about how things should be done.

With the goal of solving the problem statement illustrated above, the following tasks
that were accomplished and the issues and processes leading to the same have been
discussed in this report.

Á A basic proof-of-concept was developed which included a sound-grid based mouse
feedback interface, ultrasonic sensors controlled through digital pulses from a
microcontroller and a familiarity with interfaces of Windows Mobile. Animated
previews of concepts such as SonicMap and in-Focus menu were also created to
explain the concepts and obtain user feedback for the same.

Á Research papers and studies by various groups were meditated upon to gain an
understanding of the problem areas, complexities involved and limitations for
development of the prototype and its use by the visually impaired. A multi-
disciplinary study was essential for the filling in the details on the identity and
perceptions of the blind; these studies required familiarity in the areas of Human

6

Computer Interaction, Sense modalities, Techniques of User Research and Usability
Engineering. Students from NID and the work of Abhigyan Singh and Rahul
Mukherjee on Synesthesia helped us through the processes of interacting with the
blind for user research and usability.

Á DirectX worlds were created to help us model the auditory feedback before the
actual hardware device was completed for testing. The interaction and auditory
responses of our system were streamlined based on user feedback and further
features were added to present a more complete representation of the operating
system augmented with accessibility features. This involved a solid understanding of
the workings of the Windows operating system and its structures for issuing
interrupts and events at different junctures in various modes of operation.

Á The hardware was refined for better response and noise reduction. The hardware
circuit went through multiple iterations for it to provide stable readings and to
calibrate the signal amplifications and timings. Certain issues regarding the
unhandled hardware interrupts in the microcontroller were addressed and the
PromiESD Bluetooth module was used to transfer the data from the microcontroller
to a Windows Mobile based device (Windows based PC used for experimentation
purposes). The hardware was prepared for PCB layout and the proper components
were soldered on to the PCB as a further step towards a portable system. Battery
issues were not looked upon with care, and therefore changes were required to
accommodate the fluctuating voltage and current response of standard batteries.

Á Familiarization with new platforms such as the Windows Presentation Foundation by
active involvement in the beta-testing of development environments like Expression
Interface Designer to create in-Focus menu. These platforms were subsequently
leveraged to showcase possibilities of in-Focus menu in the future.

Á Interfaces for the application running on mobile device (loaded with Windows
Mobile 5.0 OS) were designed in Visual Studio 2005 keeping in mind the usability
aspects for the visually impaired.

Á A physical model made of acrylic was also designed with the help of product
designers from NID, to test the morphology of the device and its accompanying
circuit in real environments.

7

Process Description

The design and development of the current prototype has progressed through three
distinct stages:
- Ideation, user expectations and system level framework;
- Technical explorations and user feedback;
- Research relating to the visually impaired, development of usable software systems
 and refinements towards a hardware prototype.

The initial brainstorming sessions were aimed to broaden the teams understanding of
problems faced by the visually impaired and the details of such experiences.
Enhancements rather than direct solutions were considered as a more optimal means of
aiding the visually impaired in navigation. These brainstorming sessions were
interleaved with visits to the local blind school in Gandhinagar to help us draw up a
structure of the expectations from our designs. The need for understanding auditory
processing by the blind led us to consider computer-based simulations of spaces; such
investigations helped us to discuss the problems faced by the visually impaired in using
modern GUI based operating systems and software applications. The goals were
broadened to include mouse based navigation and the entire system framework was
prepared with user scenarios, design patterns and considerations for further research.

The second phase of development involved exploring technologies which could help
realize the system goals. The basic set of expectations that resulted from the
documentation developed in the first phase was used a starting point to consider
various hardware and software components that were available. Sensors,
microcontroller and development environments and work-division were decided upon
and development was started on multiple-module basis. The work primarily involved
learning and familiarizing with the tools and techniques that were to be useful in the
development of the prototype. A basic proof of concept of the hardware and software
was presented in Bangalore.

This document reports our explorations, thinking and findings in the third phase. The
work started as a critical look at the methods of interaction we were using and attempts
to better understand the hardware functionality and methods of increasing accuracy
and stability of the system. The results at the end of this phase have been summarised
in the introduction as a broad look into the accomplishments and findings of the project.

8

Team and Contributions

Deepak Jagdish

Design and development of interfaces for the software application using .NET
Framework 3.0 (containing Windows Presentation Foundation)
Exploring systems design of existing solutions for the visually impaired;
Research for base technologies to be used in different modules of the project which
included Expression Suite, Microsoft Orcas, Visual Studio 2005 etc.;
Development of Bluetooth module for PC & PocketPC for testing and experimentation
purposes of the PromiESD Bluetooth chip; also studied alternative methods to
implement the same.

Mohit Gupta

User research, usability feedback and HCI-related research
Interaction of the microcontroller and Bluetooth module
Mobile Interfaces (not used) and visualizers for easy demonstration
Soldering and testing of the PCB module and design of the physical prototype

Rahul Sawhney

Software Design which involved:
Making windows accessible to the blind
Design and development of DirectX based virtual worlds
Research and use of technologies (MS Active Accessibility , Win32 , .NET , DirectX SDK,
WMP API , Active X - COM , Windows Event handling , Process handling and inter
process communication)

Shreyas Nangia

Experimentations with the circuit for better working of the ultrasonic sensors and
reduction of signal noise
Development of embedded software for the ultrasonic range finder
Design and production of the PCB
Visual radar for real-time data collected through sensors

9

Motivations

The problems faced by the blind/visually impaired are many, ranging from simple tasks
like getting dressed or making a cup of tea, to problems like inability to read and write
easily. But one of the biggest challenges caused by blindness is Isolation, both physical
and social. The problem stems from the fundamental challenge of self-controlled
mobility. It is extremely difficult for the blind/visually impaired to even get out of their
own homes and navigate themselves to places they wish to go. In addition to such
constraints in the physical world, the blind people also have near-zero access to the
plethora of facilities provided by the advent of technology. In fact, upon interaction with
some blind people, it was clear that they were not able to use some of the most
common facilities like instant messaging over phone, accessing the internet, using
Ƴ ŜŘƛŀ ǇƭŀȅŜǊǎ ŜǘŎΦ ¢ƘŜƛǊ ŀŎŎŜǎǎ ŘƻƳ ŀƛƴ ǘƻ ǘƻŘŀȅΩǎ ŎƻƳ Ƴ ƻƴ ǘŜŎƘƴƻƭƻƎƛŜǎ ƛǎ ƴŜŀǊƭȅ ƴƻƴ-
existent and this is one of the primary issues we propose to solve effectively.

In this endeavour of ours, we aim to see health as expanding possibilities for the
blind/visually impaired struggling to lead a normal, comfortable life. We feel the need to
enable the blind/visually impaired people to achieve a high quality of access to day-to-
day navigation scenarios and techniques. This project effort proposes to give the blind
the ability to move around easily in the real-world and in the process revolutionize their
sense of mobility. In addition to this, it also aims to give the blind people their personal
space in the virtual world. With innovations in virtual-world applications and navigation
techniques, Sonique makes anything in the virtual domain available to the blind user by
providing easy accessibility solutions on the PocketPC. The impact of our solution is
envisioned to be such that the blind community can break the barriers of their restricted
environment and attain total freedom of navigation, both in the real and virtual worlds.

Designing with the above vision, the gave us the chance to come up with some really
new and exciting ways to use existing technologies, combine them and optimize it for
use by blind people.

Expectations and overview after the first phase

An overview of the innovative solutions that we have pictured is described in this
section. Each of these modules, when integrated with other components of the Sonique
solution gives a whole new dimension of vision to the blind people. The major modules
are shown in perspective with respect to other elements in the System Architecture
diagram.

10

11

As per our initial project plans, the design of solution to be constructed was as shown in
the System Architecure diagram. Out of this initial blueprint, only a select number of
items have been able to be implemented, either due to resource constraints or time
constraints.

In the hardware section, it was initially decided to include Ultrasonic Sensors, a GPS
tracker, and a Digital Compass. In the final product, only the ultrasonic sensors were
included which provided basic system functionalities. Items like GPS tracker and Digital
Compass required further time for implementation and hence were only discussed at a
technical level without implementation. We identified that for the final real-world
navigation system to work successfully, it was necessary to have a reference point on
which the system could map positional coordinates. This is why a GPS device and a
Digital Compass were deemed to be necessary.

The next task that was planned was to interface this set of ultrasonic sensors with a
microcontroller which would make sense of the data collected by the sensors. This was
successfully implemented with an Atmel ATMEGA32 microcontroller working
simultaneously with three pairs of ultrasonic sensors (transmitter-receiver pair). The
received data was verified to be correct in its scope of around 3.5 meters, while the
resolution of the sensors was very hard to estimate.

Our next aim was to transfer this distance data to a mobile device like a PDA (or
Smartphone) wirelessly. For this, we preferred using the Bluetooth® wireless protocol.
The PDA would have inbuilt Bluetooth capability, which meant that the microcontroller
would have to interface itself with a Bluetooth chip for pairing up with the PDA. The
PromiESD02 Bluetooth chip was chosen because it had an inbuilt Bluetooth stack which
would handle incoming connections, and it also proved to be much cheaper than other
industrial alternatives. Since it was the first time that we were working with such a chip,
there were some mistakes made in implementing it and so this stage took much longer
than expected. Finally, our aim was achieved, of transferring data wirelessly to a
Bluetooth enabled device running an operating system which would host our client
software.

Moving onto the software domain, we had to build software for a mobile device like the
PDA running on a Windows Mobile operating system. Our estimated time for
completion of this stage was met fairly accurately, with the removal of certain initially
planned modules due to lack of certain software libraries. Even then, we were able to
implement software that could receive data on-the-fly over Bluetooth and this data
could then be used for direct sound modulation. From this point onwards, our plans had

12

to change from the initial blueprint because the rest of the system had to be
implemented on a laptop rather than a mobile device like a PDA. This was to enable a
better demonstration of the prototype as well as financial restraints of buying software
libraries for a mobile device.

13

Software design and development

With Sonique, we intended to redefine the way the visually impaired used their
computers, it was necessary for us to change the input and output mechanisms
fundamentally, without introducing new peripherals or redesigning the existing ones.

Functionally, we revamped the following Windows functionalities:

- Mouse functionality
- Keyboard functionality
- Sound Feedback system
- Windows Event Management System
- Windows Accessibility at OS and Application levels

Mouse

The visually impaired have never been able to use a mouse or any such interaction
device which provided non-linear or spatial interaction. Thus , it was required that
whatever inputs the mouse provided were first intercepted by the software layer of
Sonique, processed, interpreted, actions performed and then , if required sent to the
Operating System (OS) Windows.

To accomplish the above task, we made use of Hooks that are present in the Operating
System. In the following paragraphs, our approach to learning and implementing hooks
to address this issue is illustrated:

In the Microsoft® Windows® operating system, a hook is a mechanism by which a
function can intercept events (messages, mouse actions, keystrokes) before they reach
an application. The function can act on events and, in some cases, modify or discard
them. Hooks modify the actual flow of code. A hook is ultimately a callback function that
applications register with a particular system event. Functions that receive events are
called filter functions and are classified according to the type of event they intercept.
For example, a filter function might want to receive all keyboard or mouse events. For
Windows to call a filter function; the filter function must be installedτ that is,
attachedτ to a Windows hook (for example, to a keyboard hook). Attaching one or
more filter functions to a hook is known as setting a hook. If a hook has more than one
filter function attached, Windows maintains a chain of filter functions. The most
recently installed function is at the beginning of the chain, and the least recently
installed function is at the end.

14

A fundamental aspect of hooks that we utilized is their scope. Normally, hooks may have
either system or thread scope. A few, however, can only have system scope. When a
hook works at the thread level, it can only trap events generated within that thread. For
example, a keyboard hook gets invoked only for the keystrokes directed to the thread's
input queue. Similarly, a systemwide mouse hook gets called whenever the user moves
the mouse, regardless of the particular thread that handles the event. A system-scoped
hook is called to handle the event for all the currently running threads. This poses a
precise context problem. How can a piece of code defined in one Win32 process invade
the memory space of another process? To allow for this, a systemwide hook must be
defined in a DLL so that the system can easily inject that code into each of the Win32
process memory spaces.

Thus thread hooks (or local hooks) are patently more efficient than system hooks (or
global hooks). On the other hand, they cannot accomplish all the tasks global hooks can.

The .NET Framework does not provide built-in facilities or infrastructure to handle
hooks. Right now, hooks are considered merely a special breed of callback functions and
their implementation is left to P/Invoke (the .NET Framework infrastructure to call
unmanaged APIs residing in the underlying operating system).

There is, as we realized an important platform-related aspect that marks Win32 and the
.NET Framework. In Win32, the smallest unit of processing is the process. The CPU

15

works by allotting slices of time to each process. While running, a process sees the
whole 32-bit range of memory at its disposal. For this reason, it's architecturally
impossible for a process to inadvertently corrupt another process' memory. (A process
can still break another process, but they must both be explicitly using globally shared
memory.)

In the .NET Framework, there is a significant change to this process. The .NET managed
code runs under the control of the common language runtime (CLR) module and is
subject to inspection and verification before execution. The CLR enables a piece of
managed code only if it can be marked as type-safe code. The verification process
ascertains the correctness of the intermediate language (IL) code and ensures that it
accesses only authorized memory locations. In addition, type-safe code is guaranteed to
reference only strictly compatible types and call objects only through properly defined
types.

Thus our first problems were on how to get a mouse hook (or keyboard) run in .NET
environment. We found several code snippets on the internet which got us started. But
the .NET environment was completely new to us (it is a relatively new application

16

development platform) and it took us a while to attain a certain comfort level with it.
Then we spent a lot of time understanding Windows hooking nuances. Hooks, as we
realized was a technique which interfered with the normal working of application level
threads and in our case we had to monitor all the inputs being sent to the OS in general.

The normal, high-level keyboard hook, WH_KEYBOARD, intercepted keystrokes as they
were removed from a thread's message queue. The WH_KEYBOARD hook works well for
most applications. However, certain keystrokes are never directed to a thread's
message queue. The Ctrl+Esc, Alt+Tab, and Alt+Esc key combinations are perfect
examples. These keystrokes are handled internally by the system's raw input thread.
Since application threads never receive messages for these keystrokes, there is no way
that an application can intercept them and prevent the normal processing. This behavior
is by design and ensures that a user can always switch to another application's window
even if an application's thread enters an infinite loop or hangs.

However, there is a small class of applications that really has a valid need to intercept
these keystrokes. To meet the needs of these applications, Microsoft introduced the
WH_KEYBOARD_LL hook. This low-level hook is notified of keystrokes just after the user
enters them and before the system gets a chance to process them. But this hook has a
serious drawback: the thread processing the hook filter function could enter an infinite
loop or hang. If this happens, then the system will no longer process keystrokes properly
and the user will become incredibly frustrated.

To alleviate this situation, Microsoft places a time limit on low-level hooks. When the
system sends a notification to a low-level keyboard hook's filter function, the system
gives the function a fixed amount of time to execute. If the function does not return in
the allotted time, the system ignores the hook filter function and processes the
keystroke normally. The amount of time that is allowed (in milliseconds) is set via the
LowLevelHooksTimeout value under the HKEY_CURRENT_USER\Control Panel\Desktop
registry subkey.

In our case though, our hook (low level) was intercepting all messages being sent to the
OS, hence it was imperative for us to handle the messages carefully and have a bypass
mechanism in place, in case Sonique software module fell into a no-exit subroutine.

Here, nCode provides us with the escape clause:

17

if (nCode >= 0)

 {

 try

 {

 mouseHookStruc =
(MouseHookStruct) Marshal .PtrToStructure(lParam,
typeof (MouseHookStruct));

 }

 catch (Exception e)

 {

 MainForm .handle.LogWrite(Convert .ToString(e));

 return 1;

 }

 // MainForm.handle.LogWrite("doneproc");

 // if ok and someone listens to our events

Basically, if nCode is less than zero (which would be the case when Ctrl + Alt + Del) the
keys ctrl, alt, del are allowed to reach the OS.

Then the information we needed about mouse inputs needed to be extensive , about all
ƛǘΩǎ ōǳǘǘƻƴǎ ƛƴŎƭǳŘƛƴƎ ǿ ƘŜŜƭ ŀƴŘ ǎŎǊƻƭƭƛƴƎΦ ¢Ƙŀǘ ǊŜǉǳƛǊŜŘ ǳǎ ǘƻ ŘŜŦƛƴŜ ŀ ǎǘǊǳŎǘǳǊŜ ǿ ƘƛŎƘ
would be able to accomodate everything the hook callback provided. The following
structure was hence utilized.

18

public class MouseHookStruct

 {

 public Point pt;

 public int mouseData;

 public int flags;

 public int time;

 public int dwExt raInfo;

 }

mouseHookStruc = (MouseHookStruct) Marshal .PtrToStructure(lParam,
typeof (MouseHookStruct));

The above line basically ñMarshallsò the information from a C style
struct (which is the way in which windows (Win 32) stores information)
to o ur own structure MouseHookStruct.

What we then did was to , depending on the mouse inputs , perform
different actions. The following are the starting lines of one of our
sub routines.

 # region menu

 if (kickmup && kickrup)

 {

 if (wParam == WM_MBUTTONUP) { kickmup = false ;
return 1; }

 if (wParam == WM_RBUTTONUP) { kickrup = false ;
return 1; }

 }

19

 try

 {

 if (freeze)

 {

 if (!selected)

 {

 switch (wParam)

 {

 case WM_MBUTTONUP: if (j == 0) {
TTS.speak("Settings Menu , use scroll wheel"); return 1; }

 selected = true ;
mouse_event((uint) MOUSEEVENTF.MIDDLEUP, 0, 0, 0, 0); return 1; break ;

 case WM_RBUTTONUP: if (j == 0) {
TTS.speak("Settings Menu , use scro ll wheel"); return 1; }

 selected = true ;
mouse_event((uint) MOUSEEVENTF.MIDDLEUP, 0, 0, 0, 0); return 1; break ;

 case WM_LBUTTONUP: if (j == 0) {
TTS.speak("Settings Menu , use scroll wheel "); return 1; }

 selected = true ;
mouse_event((uint) MOUSEEVENTF.MIDDLEUP, 0, 0, 0, 0); return 1; break ;

 case WM_MOUSEWHEEL:

 if (mouseHookStruc.mouseData < 0)
if (++j > 4) j = 1;

 if (mouseHookStruc.mouseData > 0)
if (-- j < 1) j = 4;

20

Care was taken not to hinder the with the regular functionality of the buttons. More
functionality was added by utilizing a sequence of clicks to perform various actions.
Windows basically utilizes one mouse button at a time. We imparted functionality to
several combinations of mouse clicks; a middle button click after a right click would
work differently than a right click after middle click.

case WM_RBUTTONDOWN: if (isL && !infocus)

 {

 if (!isLM && !rdown && !mdown)

 {

 MainForm .handle.LogWrite(" R over L ");

Basically, our aim was to make the desktop more accessible through the mouse. The
various functions provided aimed to provide the user with a lot of accessibility
information depending on the mouse cursor position and functional modes.

The main challenge here lay in how to handle the intercepted input. We also had to
ǇǊƻŎŜǎǎ Ŧŀǎǘ ŀǎ ŀƴƻǘƘŜǊ ƛƴǇǳǘ ǿ ŀǎ ŀƭǿ ŀȅǎ ƻƴ ƛǘΩǎ ǿ ŀȅ ǘƻ ǘƘŜ ŎŀƭƭōŀŎƪ ŦǳƴŎǘƛƻƴΦ ¢Ƙǳǎ ƛǘ
required us design a really complicated logical anaylser which would quickly process
inputs or rather combination of inputs and start of relevant actions before the next
input comes in.

Keyboard

Same as what we did with the mouse, low level Keyboard hooks were deployed to fully
intercept all keyboard inputs. Care was taken to store the keyboard state in the
beginning, because Windows allows for sticky keys, key toggling etc.

byte [] keyState = new byte [256];

 GetKeyboardState(keyState);

 byte f = 1;

21

 if ((keyState[144] & f) == f) numlock = true ; else
numlock = false ;

 if ((keyState[20] & f) == f) capslock = true ; else
capslock = false ;

 if ((keyState[145] & f) == f) scrolllock = true ; else
scrolllock = false ;

 // check this ..vaise this works

 f = 0x80 ;

 if ((keyState[(int) Keys .LControlKey] & f) == f) lctrl =
true ; else lctrl = false ;

 if ((keyState[(int) Keys .RControlKey] & f) == f) rctrl =
true ; else rctrl = false ;

 if ((keyState[(int) Keys .LWin] & f) == f) lwin = true ;
else lwin = false ;

 if ((keyState[(int) Keys .RWin] & f) == f) rwin = true ;
else rwin = false ;

 if ((keyState[(int) Keys .LMenu] & f) == f) lmenu = true ;
else lmenu = false ;

 if ((keyState[(int) Keys .RMenu] & f) == f) rmenu = true ;
else rmenu = false ;

 if ((keyState[(int) Keys .RShiftKey] & f) == f) rshift =
true ; else rshift = false ;

 if ((keyState[(int) Keys .LShiftKey] & f) == f) lshift =
true ; else lshif t = false ;

 // if (lshift) MainForm.handle.LogWrite("numlock");

22

.ŀǎƛŎŀƭƭȅ ǿ Ŝ ƛǎƻƭŀǘŜŘ ǘƘŜ ƭŜŦǘ ŎǘǊƭ ƪŜȅ ŀǎ ƻǳǊ ŎƻƳ Ƴ ŀƴŘ ƪŜȅΣ ŀƭǘŜǊƛƴƎ ƛǘΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅ
completely. Keys pressed in combination with the Lctrl would provide varied
accessibility information and information about various cached events. The scroll lock
was used to toggle voice feedback.

The keyboard also served as the control panel of Sonique, with various command keys
deployed for orthogonal and centralized deployment of all of ǘƘŜ ǎƻŦǘǿ ŀǊŜΩǎ ŎŀǇŀōƛƭƛǘƛŜǎΦ

Windows Accessibility at OS and Application levels

Both mouse and keyboard were used to attain accessibility information which would be
necessary for the visually impaired to navigate properly.

For this purpose, Microsoft Active Accessibility was utilized.

The main idea behind Active Accessibility is to provide the functionality to access UI
elements programmatically to get information about or manipulate these elements. UI
elements that support this functionality are called accessible. In most cases this means
that a UI element supports the IAccessible interface.

The core functionality in Active Accessibility is provided by OLEACC.DLL. Each time you
call a function that returns a pointer to an IAccessible interface corresponding to a
particular UI element, OLEACC.DLL verifies whether this element natively supports
IAccessible. Native support means that IAccessible is implemented programmatically for
this element.

When a UI element doesn't support IAccessible natively, OLEACC.DLL verifies the
Windows class name for this element. If this class is a USER or COMCTL32-supported
class, OLEACC.DLL creates a proxy that implements IAccessible on behalf of the UI
element. Mostτ but not allτ COMCTL32 controls have IAccessible support provided by
OLEACC.DLL.

Examples of UI elements that natively support IAccessible are custom controls, owner-
drawn, or windowless controls. Since developers who create software that contains
these kinds of UI elements also implement the interfaces for these elements, they are
also responsible for providing correct support for methods and properties. In practice
that means some methods or properties might be implemented improperly or not at all.

23

This also means that a developer who implements the interface defines its properties,
such as the name and role.

If a UI element doesn't support IAccessible natively and OLEACC.DLL doesn't recognize
its class name as supported, OLEACC.DLL creates a default proxy that provides minimal
HWND-based IAccessible support, such as location and whether the window is enabled
and visible. The default proxy doesn't provide any control-specific information.

Since Active Accessibility is a relatively new technology, it has some flaws in practical
use. Most problems arise because there are many controls with only partial supportτ or
no support at allτ for Active Accessibility

Sonique has made use of MSAA to make the desktop accessible to the visually impaired.
Accessibility information about the UI element under the mouse cursor is fully
extracted. In fact, names of all list items in a folder are cached as soon as the cursor
reaches a listview UI element (basically a folder). Information like, the name of the
current taskswitched item (alt+tab) , list of selected items is also extracted.

In circumstances where MSAA fails to provide us with information, direct Win32 based
method were used. In some cases, the techniques employed were specific to current
version of Windows. In some cases the Win32 methods had a lot of bugs. And in some
cases, there were only legacy MFC methods. (MFC is Microsoft Foundation Classes, a
Windows framework used in previous versions of Windows, but now present only as a
legacy one for backward compatibility). So, it was only after a lot of experimentation,
that we were able to perfectly extract the desired information from Windows.

24

Our work on accessibility was original. Although keyboard based screen readers are
known to exist, we are yet to find a solution which deploys both mouse and keyboard to
attain accessibility information in a manner Sonique does.

The problems we faced were numerous. MSAA has not been used much by the
developer community in general and we did not have any examples or code lines to get
us started. And the documentation provided for MSAA is for native Win32 whereas we
were coding in .NET. Then we had to devise a system which would be make efficient use
of processing resources as there would always be some new information waiting to be
accessed.

Accessibility of commonly used applications was also increased by deploying an
interactive and intuitive menu called in-focus menu on top of them. Basically, the most
commonly used commands were abstracted and presented in a very accessible format.

25

For experiment purposes we developed the in-focus for Windows Media Player and
Explorer.

Frameworks & Platforms used & reasoning

The front end of in-focus was developed on Windows Presentation Foundation [WPF], a
recent Microsoft framework for enhanced visual and interactive experience.

All the accessibility features implemented via user interfaces were built on the .NET 3.0
Framework1. During the initial states of development, .NET 3.0 was called WinFX. We
made extensive use of the Windows Presentation Foundation (or WPF), which is the
graphical subsystem of .NET 3.0 Framework.

The reason for choosing to work with WPF is that it provides a consistent programming
model for building applications and provides a clear separation between the UI and the
business logic. WPF application can be deployed on the desktop or hosted in a web
browser. It also enables richer control, design, and development of the visual aspects of
Windows programs. It aims to unify a host of application services: user interface, 2D and
3D drawing, fixed and adaptive documents, vector graphics, raster graphics, animation,
data binding, audio and video. Besides this, WPF introduces a new language known as
eXtensible Application Markup Language (XAML), which is based on XML. Using XAML to
develop user interfaces also allows for separation of model and view; this is generally
considered a good architectural principle. In XAML, every element maps onto a class in
the underlying API, and the attributes are set as properties on the instantiated classes.

Rationale behind the design & development of in-focus Menu

 ά² Ƙŀǘ ƛǎ ƛƴ-ŦƻŎǳǎ Ƴ Ŝƴǳέ

The in-Focus Menu is a Microsoft Active Accessibility driven radial context menu system
that presents the user with the most relevant functions in the current window context.
For instance, when the user is using Windows Media Player on his PocketPC, by
touching the stylus on the screen, he/she would be presented with a high-contrast
radial menu centered at that point. This radial menu will be consisting of the most
relevant commands that he would need to use in thaǘ ǇǊƻƎǊŀƳ Ωǎ ŎƻƴǘŜȄǘΦ !ǎ ǘƘŜ ǳǎŜǊ
moves the stylus around the point where he first clicked and moves over the different

1 The Microsoft .NET Framework is a software component which can be added to the Microsoft Windows operating
system. It provides a large body of pre-coded solutions to common program requirements, and manages the execution
of programs written specifically for the framework.

26

segmented options in the menu, in-Focus will speak out the description of the option in
focus. The user can also navigate the radial menu of in-Focus using the direction keys on
the Pocket PC and use the central Action button to execute the option in focus. The
radial menu is coupled along with a sub-vertical menu as and when required. Such a
vertical listing would occur in scenarios like the play-list content in Windows Media
Player or a listing of hyperlinks that are present in a webpage being browsed by the
user.

The sub-vertical menu can also be navigated by using the up and down direction keys on
the Pocket PC and it will speak out the option that is selected. Subtle audio effects has
also been included in the design of in-Focus to let the user know of relative position of
options in the list and to know when he has reached the end of a list or makes a
selection. The in-focus menu has been designed in high contrast so that it would be
useful also for a user who has partial visual impairment and can make use of whatever
little sight capabilities he has.

 άƛƴ-focus menu ς {ǘǊǳŎǘǳǊŜ Υ ǿ Ƙȅ ϧ Ƙƻǿ έ

During the development of in-focus menu, a lot of ergonomics rules had to be kept in
mind, with special emphasis on the visually impaired user. We made use of one of the
most fundamental laws of ergonomics in user-interfaces, which is called the CƛǘǘΩǎ [ŀǿ Φ
In ergonomics, Fitts' law is a model of human movement, predicting the time required
to rapidly move from a starting position to a final target area, as a function of the
distance to the target and the size of the target. Fitts' law is used to model the act of
pointing, both in the real world, for example, with a hand or finger and on computers,
for example, with a mouse/ stylus.

Since the advent of graphical user interfaces, Fitts' law has been applied to tasks where
the user must position the mouse cursor over an on-screen target, such as a button or
other widget. Fitts' law can model both point-and-click and drag-and-drop actions. Some
ƻŦ ǘƘŜ Ǉƻƛƴǘǎ ǊŜƭŀǘŜŘ ǘƻ CƛǘǘΩǎ [ŀǿ ǘƘŀǘ ǿ Ŝ ƭŜŀǊƴǘ were:

Á It applies only to movement in a single dimension and not to movement in two
dimensions.

Á It describes untrained movements, not movements that are executed after
months or years of practice.

Á Buttons and other widgets to be selected in GUIs should be a reasonable size; it
is very difficult to click on small ones.

27

And most importantly,

Á Pie menu items typically are selected faster and have a lower error rate than
linear menu items, for two reasons: because pie menu items are all the same,
small distance from the centre of the menu; and because their wedge-shaped
target areas (which usually extend to the edge of the screen) are very large.

Keeping the above principles in mind, we designed the in-focus menu with a structure as
shown in the diagram below:

(Fig 1: Work-in-Progress ς Structure of in-focus Menu)

28

In addition to the above guidelines that we discovered and adhered to, it was also
necessary to optimize this accessibility solution for the partially visually impaired people
also. Hence it was very necessary to ensure that the colors used in making this plug-in
interface were of a high contrast-low contrast combination so as to help in easier
understanding for the specific target audience.

It was also necessary to provide sound cues while the visually impaired person would
use the specialized in-focus menu. For instance, there would be sound notifications to
let him know which button/widget is he currently on, and what are the actions
associated with it.

For the back-end of infocus, we tried out several approaches.

One of the ways was to hack into the message interaction of the given application with
the underlying OS, in our case, Windows. And then interact with the application by
sending similar messages from Sonique.

The other approach we tried was to emulate clicks over the application by quickly
moving mouse cursor from one command button to the other in the desired sequence.
Since all of that would be happening programmatically, the process would be pretty
quick (but not as quick as in the first case).

Another approach we tried was to, to utilize the accessibility interface implemented by
the application.Though as we know, the IAccessible interface is usually partially
implemented.

Another thing we tried was to utilize the API provided by the application and control the
application through it.

We were successful in all the above strategies. But we chose the last option because of
the degree of control it granted us over the application in question i.e.Windows Media
Player.

Windows Event Management System

When we initially designed sonique , windows event handling was not in the
immediate scheme of things. But it soon became obvious that sonique was grossly
incomplete without a proper event management system which would interact with
windows system and gather all possible information(windows events) of use from it.
The event information would then be processed , quickly , and presented to the user in
a as intuitive and unobtrusive manner as possible ,

29

Windows is a GUI based system. An intrinsic part of any interactive system is a
feedback mechanism , an acknowledging system , which informs the user of the status
of the ongoing interaction. Such feedback occurs subtly, or inconspicuously for us ,
people with vision. But for the visually impaired, that feedback (most of which is
visual) is absent. Thus it is imperative to keep a tab on the ongoing interaction with
the OS and provide necessary auditory feedback to the user.

² Ƙŀǘ ǿ Ŝ ŘƛŘ ǘƻ ŀŎŎƻƳ ǇƭƛǎƘ ǘƘŜ ŀōƻǾŜ Σ ǿ ŀǎ ǘƻ ΨƘƻƻƪΩ ǿ ƛƴŘƻǿ ǎ ŜǾŜƴǘ ǎȅǘŜƳ Φ

Microsoft® Active Accessibility® provides a mechanism called WinEvents that allows the
operating system and servers to notify clients when an accessible object changes. There
are numerous conditions in which a server notifies a client of a change. Each event
constant defined by Active Accessibility describes a condition about which a client is
notified. For example, WinEvents can signal:

ω ² ƘŜƴ ŀƴ ƻōƧŜŎǘ ƛǎ ŎǊŜŀǘŜŘ ƻǊ ŘŜǎǘǊƻȅŜŘΦ

30

ω ² ƘŜƴ ŀƴ ƻōƧŜŎǘ ǊŜŎŜƛǾŜǎ ƻǊ ƭƻǎŜǎ ŦƻŎǳǎΦ

ω ² ƘŜƴ ŀƴ ƻōƧŜŎǘϥǎ ǎǘŀǘŜ ƻǊ ƭƻŎŀǘƛƻƴ ŎƘŀƴƎŜǎΦ

ω ² ƘŜƴ ŀƴȅ ƻŦ ŀƴ ƻōƧŜŎǘϥǎ ǇǊƻǇŜǊǘƛŜǎ ŎƘŀƴƎŜΦ

Problem with WinEvents is that it is not implemented fully and properly. Much of the
underlying reasons which fire a particular winevent are unclear. Windows event
notification system is incomplete and quite a few functions are buggy. Thus we faced
a lot of problems in trapping the relevant events . Usually several event notifications
would happen simultaneously. There would be several dummy notifications too. There
were several other issues like different events sending similar notifications , a single
event (externally ,that is) sending several notifications .

We , eventually , got around these problems by caching all the information and
developing a rule system based on a lot of experimentation and observation of events
of interest. All possible information about the events and their parents were observed
to find the resolution factors .

31

Sound Feedback System

It would not be wrong to say that sonique is all about sounds and feedbacks. For
whatever underlying processing that takes place there is only sound / voice auditory
feed that puts forth the information to the user.

We utilized Microsoft Direct Sound for generating sound feedback and Microsoft
Speech Engine for voice feedback.

Sonic Map

² Ŝ ǾƛǎǳŀƭƛȊŜŘ ΨǎƻƴƛŎ Ƴ ŀǇΩ ŀǎ ŀ ǾƛǊǘǳŀƭ ǎǇŀŎŜ completely expressed and realized through
ǎƻǳƴŘΦ ² Ƙŀǘ ǿ Ŝ ƛƴǘŜƴŘŜŘ ǘƻ Řƻ ǿ ŀǎ Σ ǘƻ ǘǊŀƴǎƭŀǘŜ ǘƘŜ Řŀǘŀ ǊŜŎŜƛǾŜŘ ŦǊƻƳ ǎƻƴƛǉǳŜΩǎ ǊŜŀƭ
time navigation system into a virtual three dimensional space completely expressed
though sound and voice tags. Basically, we intended to virtualise the real world , the
ǳǎŜǊΩǎ ǎǳǊǊƻǳƴŘƛƴƎǎ Σ ǎƻ ǘƘŀǘ ǘƘŜ ŜƴǾƛǊƻƴƳ Ŝƴǘ ŀƴŘ ǳǎŜŦǳƭ ƛƴŦƻǊƳ ŀǘƛƻƴ ŀŘŘŜŘ ǘƻ ƛǘ ōȅ ǘƘŜ
user , in the form of voice tags , could be utilized by other sonique users.. Basically , a
map built for the blind by the blind.

We utilized dummy data to generate the map . In order to add flexibility in map design
and allow us to experiment more extensively , the map was generated from a text file
which held the the map outline. The map would then be populated with spheres (
representing point data) generated at random points based on the outline provided
by the text file.

32

Attempt to make it with textures.

33

